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Abstract Cues that females use to select potential mates
have attracted substantial research effort, but the criteria
for male mate choice remain very poorly known. Red-
sided garter snakes (Thamnophis sirtalis parietalis) court
and mate in large aggregations around overwintering dens
in southern Manitoba, Canada. Both courtship and mating
are size-assortative: small male snakes court small as well
as large females, whereas larger males court only large
females. This system provides a unique opportunity to
assess the cues that males use in selecting mates, and in
particular the mechanisms that generate a size-related
shift in mate preference. Experiments in which we
manipulated body sizes and scents showed that both
vision and scent (sex pheromones) were important. Large
males directed intense courtship only when the stimulus
provided both visual and chemical (skin lipid) evidence of
large body size. Small males were much less discrimi-
nating in both respects. Thus, size-assortative mating in
this system is generated not by larger males excluding
their smaller rivals from the largest females (as has been
reported in other reptile species), but by a size-related
shift in the visual and pheromonal cues that elicit
courtship. Males of some species may thus show complex
patterns of mate choice, with the cues that stimulate
courtship differing even among males within a single
population based on traits such as age or body size.
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Introduction

Darwinian orthodoxy says that females are choosy about
mate selection whereas males are not, but (like most
generalizations in evolutionary biology) there are many
exceptions to the rule (Trivers 1972; Andersson 1994). If
males contribute significant parental care, or are limited
in the number of females with which they can copulate,
selection may favor careful mate choice by males
(Dewsbury 1982; Sargent et al. 1986; Schwagmeyer and
Parker 1990; Olsson 1993). Nonetheless, studies on the
cues that influence mate selection by males have attracted
very little research compared to the voluminous literature
devoted to mate selection by females (e.g. Andersson
1994). As a result, there is a general perception that males
do not display the kinds of subtle, sophisticated mate-
selection “choices” so well-documented in females. Is this
a real difference between the sexes or an artifact of
insufficient study of males? Information on mechanisms
of mate choice by males may answer this question as well
as providing a broader context within which to evaluate
mate choice in general. Thus, we need a better under-
standing of the processes that determine which potential
mate is selected by a male; and especially, why males
within the same species may sometimes differ in the
attributes of females that they select as mates.

Male red-sided garter snakes (Thamnophis sirtalis
parietalis) provide an ideal opportunity in this respect.
Perhaps because they have only a limited supply of sperm
and mating-plug secretions, males are highly selective
with respect to mate choice (Shine et al. 2000b). Not only
do they tend to actively prefer large rather than small
females (Hawley and Aleksiuk 1976; Shine and Mason
2001), but the degree of this mate preference shifts with
male body size. Smaller (younger) males court and mate
small as well as large females, but larger males restrict
their courtship and mating almost entirely to larger
females (Shine et al. 2001b). Because these animals
tolerate close approach and disturbance by human
observers, we can conduct simple experiments not only
to determine which female cues elicit the most intensive
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courtship, but also to compare responses by size classes of
males that differ in mate choice.

Because female body size affects courtship intensity
of red-sided garter snakes, males must somehow assess
the body sizes of females. Vision offers the most obvious
cue to female body size, but visual information may often
not be available because most unmated females at a
communal den are submerged beneath a writhing “mat-
ing ball” of dozens to hundreds of amorous males
(Gregory 1974; Mason 1993). Experimental studies show
that males can assess female body size with the
vomeronasal system, by tongue-flicking lipids on the
female’s skin (LeMaster and Mason 2002). Do such
pheromonal cues over-ride visual cues entirely, or do
snakes use both kinds of information to assess female
body size? Also, does the proximate basis for size-
assortative courtship in this system rely upon ontogenetic
shifts in the degree of reliance on different sensory
systems? Alternatively, size-assortative mating may have
nothing to do with shifts in the cues that stimulate
reproductive behavior. Instead, males of all sizes may
prefer large females, with large males monopolizing
matings with these more fecund females. Smaller males
would thus be forced to court and mate smaller females,
so that size-assortative mating would result from male-
male not male-female interactions. This situation gener-
ates size-assortative mating in two lizard species (Olsson
1993; Cooper and Vitt 1997). If the same situation
applies in garter snakes, we would not expect to see
ontogenetic differences in the cues that elicit male
courtship.

Methods

We studied garter snakes at a communal den near Inwood, southern
Manitoba (50�32'N 97�30'W) in May 2001. These small [males up
to 60 cm snout-vent length (SVL), females up to 75 cm SVL] non-
venomous snakes gather in large numbers at overwintering dens,
and mate before dispersing in early spring (Gregory 1974; Gregory
and Stewart 1975). Males pursue newly-emerged females and
virtually ignore human interference. Thus, we could assess the
intensity of male courtship by holding female snakes by the tail and
presenting them to males on the rocky slopes surrounding the den.
We used a four-point scale to quantify intensity of the male’s
courtship (0=no interest; 1=increased tongue-flick rate; 2=chin
pressed against the female’s body; 3=body aligned with the
female’s body). Chin-pressing and body-alignment are very
distinctive and easily-scored behaviors, and are not seen in any
context other than male courtship (Whittier et al. 1985). We scored
the responses of the first five males from each of two size classes
(small <45 cm SVL; large >45 cm SVL) whose heads came into
close proximity (<2 cm) with the middle part of the female’s body.
Because the den contains >10,000 snakes, and males move about
constantly, the probability that any single male was recorded more
than once is trivially small.

To evaluate the relative significance of vision and scent, we
used dead garter snakes as our stimuli. These were five large (62–
67 cm SVL) and five small (48–54 cm SVL) females, and five
males similar in size to the small females (47–53 cm SVL). All
were found dying after attack by predators (Shine et al. 2001a), and
were humanely killed by interperitoneal injection of Brevital
Sodium. These animals were soaked overnight in hexane to extract
superficial lipids from the skin; the resultant solutions were
evaporated down to provide samples of lipids from either small

females or large females. The soaking process did not change the
animal’s superficial appearance, and the hexane itself rapidly
evaporated. These hexane-soaked snakes should thus provide a
“normal” visual stimulus, with little or no pheromonal contribution.
We first tested the attractiveness of these animals by scoring
responses of both large (>45 cm SVL) and small (<45 cm SVL)
male snakes. We then painted the “target” animals with lipids
extracted from either small or large females, and re-tested them. All
of the targets were hexane-washed between successive trials to
eliminate lipids from earlier treatments.

We obtained responses from 10 male snakes (5 small, 5 large) to
each of five replicate animals within each of nine treatments (male,
large female or small female treated with hexane, lipids from large
females or lipids from small females). We analyzed courtship
responses using three-factor ANOVA (with size class of the
courting male, target type, and size class of the female from which
lipid had been extracted as factors; and mean male response to each
target as the dependent variable).

Results

A randomly collected subsample of the courting males
showed a significant difference in mean body sizes
between small snakes (n=30, mean=39.5 cm, range 34.5–
43.1 cm) and large snakes (n=30, mean=49.6 cm, range
45.4–56.5 cm; F1,58=198.34, P<0.0001). Because many
males did not show any courtship response to many
stimuli, the data-set on response intensities was highly non-
normal in distribution. We overcame this problem by
calculating mean intensities of response per target animal
in each treatment. After arcsine transformation, the result-
ing distribution did not deviate significantly from normal-
ity and hence we could apply parametric statistical tests.

Three-factor ANOVA (with size class of the courting
male, target type, and source of lipid as factors; and mean
male response to each target as the dependent variable)
yielded a significant three-way interaction term
(F4,72=3.14, P<0.02). To clarify this situation, we exam-
ined responses separately for large and small males. Small
males responded more intensely to female targets than to
male targets and to female lipids rather than hexane
(control) scent, but with a significant interaction between
target sex and lipid treatment (Fig. 1; F4,36=6.89,
P<0.0003). This interaction term reflects the lack of
response of small males to hexane-painted males (Fig. 1).
In contrast, large males responded much more intensely to
large females painted with large-female lipids than to any
other stimulus, but with a significant interaction term
because (as for small males) hexane-soaked males attracted
no courtship (Fig. 1; interaction, F4,36=3.39, P<0.02).

We can focus on the roles of vision and scent in
eliciting courtship by holding each of these factors
constant in further analyses. In trials using large females
as the visual stimulus, large and small males differed in
their response to pheromone application (interaction
between male body size and treatment, ANOVA,
F2,24=10.08, P<0.0007): small males responded almost
equally to lipids from either small or large females,
whereas large males responded much more intensely to
the scent of large females than small females (Fig. 1). The
same pattern was seen in trials using a male as the visual
stimulus (interaction, F2,24=25.88, P<0.0001). Small
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males courted small females more intensely than did large
males, regardless of scent (F1,24=15.16, P<0.0007; inter-
action, F2,24=0.59, P=0.56).

We can examine the role of visual stimuli in the same
way, by analyzing responses when pheromonal cues were
held constant. In trials with the control (hexane) treat-
ment, males of both size classes courted females but not
males (Fig. 1), suggesting that either our hexane-soaked
targets retained some slight pheromonal cues, or that
females differ from males visually in some subtle way.
Small males courted these hexane-soaked females more
intensely than did large males (ANOVA, F1,24=10.89,
P<0.003) and large females attracted more interest than

did small females (F2,24=32.47, P<0.0001; post-hoc tests
show that courtship intensity to all three target groups
differed at P<0.05). Trials in which we applied lipids
from small females generated intense courtship from
small males but not large males (F1,24=63.94, P<0.0001),
regardless of the visual stimulus (other terms have
P>0.56). Lastly, trials in which we applied lipids from
large females provoked intense courtship, with large
males responding more strongly to the large female visual
stimulus in this trial than to other stimuli whereas small
males responded to all treatments bearing this scent
(interaction, F2,24=3.84, P<0.04).

Discussion

Our results suggest that males use both visual and
pheromonal cues to assess female body size, and that
large and small males differ in their response to these
cues. Large males directed intense courtship only when
the target provided both visual and pheromonal evidence
that it was a large female (Fig. 1). In contrast, small males
courted intensely if the stimulus provided either visual or
pheromonal evidence that it was a female, regardless of
body size (Fig. 1). One caveat to this conclusion is that
the hexane-treated animals may have retained slight
traces of pheromones even after overnight soaking, so that
some of the responses we interpret as visual might reflect
very subtle vomeronasal cues instead.

Our data are consistent with earlier reports that male
garter snakes use visual and pheromonal cues to assess a
female’s body size and allocate courtship effort accord-
ingly (Shine and Mason 2001; LeMaster and Mason
2002). Figure 1 also reveals a marked disparity between
small and large male snakes in terms of their reliance on
these different kinds of cues. Larger males were highly
selective courters (requiring both visual and pheromonal
evidence of large female body size) whereas smaller males
were less selective (Fig. 1). In particular, small males
directed intense courtship to both the visual and chemical
attributes of small females, whereas large males did not.
Mark-recapture studies on Manitoba garter snakes suggest
that all males grow rapidly and that most males within our
small category when first measured will be large males
within a year or two (Shine et al. 2001b). Thus, the shift in
mate preference reflects an age-related change within the
life of individual males rather than a behavioral polymor-
phism within the garter snake population.

This size-related shift in the cues that stimulate
courtship supports earlier mate-choice trials (Shine et al.
2001b) in showing that size-assortative mating within red-
sided garter snakes is not an indirect result of male-male
competition for the largest and most fecund females. Even
in the absence of larger rivals, small male garter snakes
vigorously courted stimuli that did not attract interest
from larger males (Fig. 1). Thus, size-assortative mating
in this species reflects an obligate shift in male mate
preferences, rather than a facultative redirection of
courtship by males unable to compete with larger rivals.
Nonetheless, such competition might have been an initial

Fig. 1 The intensity of courtship (scored on a four-point scale; see
text for details) that free-ranging male garter snakes (Thamnophis
sirtalis parietalis) directed towards various stimuli in trials
conducted at a den near Inwood, Manitoba. The stimuli comprised
recently killed snakes (males, small females or large females) that
had been soaked in hexane overnight to remove the skin lipids that
serve as sex pheromones in this species. The snakes were then
presented to mate-searching males either without further treatment
(hexane) or after being painted with lipids extracted from large
females or small females. Histograms show mean values, and bars
show one standard error on either side of the mean. Data are shown
separately for courtship by small (snout-vent length <50 cm) and
large (SVL >50 cm) males; n=5 males for each trial, so a total of 90
males were tested. See text for statistical analyses
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selective pressure for the size-based divergence in mate
recognition systems.

This size-based shift in the stimuli eliciting courtship
has major consequences for the mating system of red-
sided garter snakes. Not only does it generate strongly
size-assortative courtship and mating (Shine et al. 2001b),
but it also results in intense sexual conflict between
juvenile females and small adult males (Shine et al.
2000a). Juvenile females often copulate, presumably
because they cannot avoid doing so (Shine et al.
2000a). In turn, this sexual conflict may have moulded
major patterns of den emergence behavior, and affected
mortality schedules of different age and sex classes within
den populations (Shine et al. 2000a). Our results thus
support and extend earlier conclusions that the superfi-
cially chaotic mating assemblages of garter snakes
involve diverse and complex male-female interactions,
mediated by body sizes of the participants (e.g. Shine et
al. 2000a, 2000b; Shine and Mason 2001).

The generality of these results is difficult to assess.
There is a strong link between female body size and
reproductive output in many kinds of organisms: larger
females are likely to reproduce more often, and produce
more (and often, larger) eggs per clutch (e.g. Fitch 1970;
Seigel and Ford 1987; Clutton-Brock 1991; Andersson
1994). This link may favor a general male preference for
large (and hence, fecund) females. Such a preference has
been demonstrated in several species of lizards (e.g.
Olsson 1993; Cooper and Vitt 1997; Whiting and Bateman
1999) and two species of snake (Aleksiuk and Gregory
1974; Hawley and Aleksiuk 1976; Gartska et al. 1982;
Shetty and Shine 2002). In all these taxa, males must be
able to assess the body sizes of potential partners. The
proximate mechanisms by which they accomplish this task
undoubtedly vary interspecifically, and our study indicates
that intraspecific variation warrants examination as well.
More generally, male mate choice may exhibit as much
subtlety and complexity as the more intensively studied
reproductive “decisions” of females. Accordingly, we will
need a much better understanding of male mate choice
before we can fully appreciate mating system diversity.
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